Maximizing Interprofessional Practice in the Management of the Athlete with Diabetes

John Mucovich, MA, ATC

Katie Knappenberger, MS, RD, ATC

Northwestern University Sports Medicine

Presenter Conflicts/Disclosures

No Conflict or Disclosures

- The views expressed in these slides and today's discussion are our own
- Participants must use discretion when using the information contained in this presentation

Objectives

- Identify individuals crucial to the Diabetes Interprofessional Practice Team
- Summarize research in the area of type 1 diabetes management of elite athletes
- Explain ways to manage the relationship with and expectations of the diabetic athlete and Diabetes Interprofessional Practice Team
- Assist the diabetic athlete by making practical nutrition recommendations to reduce incidence of hyper- and hypoglycemia
- Build a Diabetes Management protocol that fits the needs of their diabetic athlete and performance environment

The Athlete with Type 1 Diabetes

Youth

- Newly diagnosed
- Parental oversight in treatment
- Most opportunity for education

Adolescent

- Athlete taking on more responsibility
- Parents still involved
- Hormones kick in

Collegiate

- Athlete managing treatment for years
- Medical care is in transition
- Environment completely changed (schedule, sleep, training, academics, social, travel)

Professional

- Athlete management
- Navigating Collective Bargaining Agreement
- High stress environments

Ultimate Goal

"Allow [the athlete with type 1 diabetes] to compete on equal ground with their teammates and competitors without diabetes."

National Athletic Trainer's Association Position Statement: Management of the Athlete With Type 1 Diabetes (2007)

Diabetes care should be managed by a multidisciplinary team (ADA Standards of Care, 2019) Team-approach leads to improvements in HgbA1c and glycemic targets (Powel et al., 2015)

Why build a Diabetes Interprofessional Practice Team?

Multidisciplinary health care teams rely on the skills and expertise of individual providers from a range of disciplines (Powell et al., 2015) Elite athletes with Type 1 Diabetes face unique challenges that have not yet been extensively reviewed in the literature

The Challenges

- Creating a deliberate, well-designed plan
 - What are the glycemic targets during training and competition?
 - When and how frequently are we testing blood glucose and ketones
 - Who holds all this data?
- Defining the role of each member of the IPT
 - DO NOT FORGET ABOUT THE ATHLETE
 - Patient empowerment linked with adherence to treatment and glycemic control (Powell et al., 2015)
 - Majority of diabetes care occurs outside of contact with clinicians (Powell et al., 2015)
 - Young adults prefer shared-decision making in their treatment (Wiley et al., 2014)

Athlete

- How long have they had diabetes?
- Who is a part of their support system?
- What is their normal routine?
 - Food
 - Insulin
 - BG Check
 - Sleep
 - Training
- What does hyper- and hypoglycemia feel like to them?
- What is their knowledge of diabetes?

Our athlete...

- Denial about disease
 - Didn't understand connection between performance
 - Didn't want anyone to know he had diabetes
- Celiac Disease
- Confident in his knowledge of carb counting, insulin corrections, and managing around exercises
 - Underestimating carb intake
 - Comfortable with training at BGs 300+
- Technology
 - Continuous Glucose Monitor (Dexcom)
- Insulin treatment
 - Multiple daily injections (MDIs) Lantus and Humalog
- Support system included himself

Staff Athletic Trainer

- Has more contact with the diabetic athlete than most members of the Diabetes IPT
- Plays a critical role in (NATA, 2007):
 - Prevention, recognition, and immediate care of hypoglycemia and hyperglycemia
 - Facilitating communication among the other members of the Diabetes IPT
 - Reinforcing nutrition concepts
 - Counseling on hydration
 - Helping athlete identify barriers

Staff Athletic Trainer

- Daily interactions with student-athlete
 - Treatments
 - Rehab
 - Practice/trainings
- Helped with monitoring
- Managed critical situations and modification of play based on BG levels
- "Middle Person"
 - Able to provide insight on what is going on with the athlete outside of diabetes

Sports Dietitian

- Board Certified Sports Dietitian (CSSD)
 - Uniquely qualified to help diabetic athletes manage their nutrition around diabetes and training
- Fueling for performance and training
 - While incorporating strategies to optimize glycemic control and promote long-term health

Sports Dietitians

- Asset on the field/court during practices and competition
- Navigating fueling around and during training
 - Fuel available from the Fueling Station or team meals
 - Fueling when traveling
- Assist with translation of insulin therapy to practical recommendations
 - Ratios for meals/snacks
 - Carb content of meals/snacks
- Motivational interviewing to assess knowledge and barriers

Team Physician/Endocrinologist

- Medical Management
 - Insulin (How? Type? Dosage? Adjustments during activity?)
 - Long-Term Health (Eye health? Wound Care? Comorbidities?)
- Set Parameters and Expectations of Protocol
 - For the IPT
 - Communication on treatment
 - Guidelines
 - For the Student Athlete
 - Communication on barriers and changes

Sports Psychologist

- ~50% of diabetes treatment teams have a mental health provider (Powell et al., 2015)
- Can assess for (ADA Standards of Care, 2019)
 - Diabetes distress
 - Depression
 - Anxiety
 - Disordered eating
 - Cognitive capacities
 - Affect or mood
 - Attitudes about diabetes
 - Stress management

Sports Psychologist

- Identify that athlete was battling anxiety, perception of being different, and increased stress
- Working with our Sports Psychologist:
 - Athlete
 - Better management of school and sport stress
 - Navigating the feeling of being different around teammates
 - Increased awareness that diabetes needed to be managed
 - IPT
 - Perspective on the athletes struggles outside of diabetes
 - How to approach athlete on the management plan
 - How to better include the athlete in decision-making

Sports Performance (Strength and Conditioning)

- Understanding critical situations
 - How to respond for the health and safety of SA
- Potential to help bridge the gap between optimal management of diabetes and its correlation to optimal performance
 - Periodization of training

Identifying the Support System

- Coaches
- Family Members
- Teammates
- Friends

Building Policies and Procedures

• Goals

- Keep athlete safe during athletic activity
- Help athlete navigate hyper- and hypoglycemia around activity
- Educate athlete in ways to manage their diabetes
- Challenges
 - Needed structure to allow for multiple clinicians to follow and provide the same recommendations
 - Flexible enough to allow for the unpredictable nature of diabetes and team sports
 - Needed to navigate the increased nutritional needs of a D1 athlete
 - Literature is lacking in sound research on Type 1 Diabetes in Elite Athletes

Activity & Blood Glucose levels

- Location of insulin delivery
- Amount of insulin in circulation
- BG before exercise
- Composition of last meal or snack
- Intensity and duration of activity

(Riddell et al., 2017)

Monitoring Blood Glucose During Activity

Starting BG	Recommended glucose management
Urgent Low (<80 mg/dL)	 Must be held from activity or removed from participation until BG is >80 and trending up Use a finger stick to confirm blood glucose level if CGM is being used Ingest 10-20 g of glucose before starting exercise Monitor closely for hypoglycemia during exercise
Below target (80-99 mg/dL)	 ✓ Ingest 10-20 g of glucose before starting exercise ✓ If in exercise, should be removed from participation ✓ Use a finger stick to confirm blood glucose level if CGM is being used ✓ BG should continue to trend up prior to entering activity ✓ Monitor closely for hypoglycemia during exercise
Near target (100-119 mg/dL)	 ✓ Ingest 10 g of glucose ✓ Can continue anaerobic exercise and high intensity interval training sessions

Monitoring Blood Glucose During Activity

Starting BG	Recommended glucose management
At target	✓ Can continue aerobic exercise
(120-250 mg/dL)	 Can continue anaerobic exercise and high intensity interval training sessions, but BG
	 Consider insulin bolus
Above target	 Can continue anaerobic and aerobic exercise
(251-300 mg/dL)	 Consider insulin bolus
Urgent high	✓ Check for ketones at the next natural break in activity if BG has been >300 mg/dL for
(<u>></u> 300 mg/dL)	approximately 30 minutes or more
	✓ If BG is ≥ 350 mg/dL, activity should be immediately halted to check ketones
	 Check ketones as specified below

Adapted from Riddell et al., 2017 & Shugart et al., 2010

Monitoring During Activity

- Checking BG every 30-45 minutes
 - Glucometer vs Continuous Glucose Monitoring (CGM)
 - Communicating those numbers with the team
- Checking for signs and symptoms of hyper- or hypoglycemia
 - Rapid blinking
 - Dropped balls
- Ensuring enough supplies
 - Insulin
 - Glucometer strips
 - Gloves
 - Alcohol wipes

Scenario 1: Continuous Glucose Monitoring vs Finger Stick

- Wireless
- Able to identify trends
- Needs to be calibrated every 12 hours
 - Can be used for treatment decisions
- Sensors can pop off easily
 - Do you have finger sticks in place to cover?
 - New sensors take 2 hours to calibrate
- Who (if anyone) is managing this data?

- Requires more equipment and "hands-on" approach
- Glucometer needs to be charged
- Sharps container
- Can eliminate human error seen with CGM

Scenario 2: Extreme Weather

- Glucometers like to be warm and dry
 - Reading won't work in the cold
 - How will you keep the equipment dry?
 - Medical tent
 - Waterproof cases
- Drying off and warming up the athlete's fingers
 - Cold hands = No blood

Scenario 3: The Kickoff Effect

- Adrenaline spike (epinephrine)
 - 100 point spike in BG in one hour
 - Anticipation of the event or the event itself
- Can take a good trending pre-game and throw it out the window
 - Athlete may want to "stack" insulin to prevent spike → can lead to an extreme low
 - Understand the athlete's response in high stress environments
 - Work with Endo to adjust insulin appropriately

Scenario 4: The Athlete Wants to be at Target Now

Too High

- Stacking of Insulin
 - Need 1.5-2 hours to see if working
 - Total insulin action time is 3-4 hours
- Leads to extreme lows during activity or recovery period

Too Low

- Over consumption of carbohydrates
 - Recommendation is 10-20 g, wait 15 minutes
 - Avoid using batch made sports drinks
- Can lead to a quick rebound
 - If doing mixed/anaerobic training, BG can go even higher

Take Home Points

- Get to know your athlete
- Don't be an island
 - Build your Interprofessional Practice Team
- Understand patient goals
- Be flexible
- Develop and continually review policies and procedures
- Value communication
- Celebrate successes

Resources

- Academy of Nutrition and Dietetics Find an Expert
 - https://www.eatright.org/find-an-expert
- American Psychological Association Psychologist Locator
 - <u>https://locator.apa.org</u>
- Different Types of Insulin
- <u>Comprehensive List of Carb Foods</u>
- <u>Signs of Hyperglycemia</u>
- Signs of Hypoglycemia

References

American Diabetes Association. (2019, January). Standards of Medical Care in Diabetes - 2019. Diabetes Care, 42.

Franz, M. J., MacLeod, J., Evert, A., Brown, C., Gradwell, E., Handu, D., & Robinson, M. (2017). Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1 and Type 2 Diabetes in Adults: Systematic Review of Evidence for Medical Nutrition Therapy Effectiveness and Recommendations for Integration into the Nutrition Care Process. *Journal of the Academy of Nutrition and Dietetics*, 1659-1679.

Gallen, I. W., Hume, C., & Lumb, A. (2011, October 4). Fueling the athlete with type 1 diabetes. *Diabetes, Obesity and Metabolism, 13*, 130-36.

Jimenez, C. C., Corcoran, M. H., Crawley, J. T., Hornsby, W. G., Peer, K. S., Philbin, R. D., & Riddell, M. C. (2007, December). National Athletic Trainers' Association Position Statement: Management of the Athlete With Type 1 Diabetes Mellitus. *Journal of Athletic Training*, *42*(4), 536-45.

Powell, P. W., Corathers, S. D., Raymond, J., & Streisand, R. (2015). New Approaches to Providing Individualized Diabetes Care in the 21st Centuary. *Curr Diabetes Rev, 11*(4), 222-230.

Riddell, M. C., Gallen, I. W., Smart, C. E., Taplin, C. E., Adolfsson, P., Lumb, A. N., & Laffel, L. M. (2017, May). Exercise management in type 1 diabetes: a consensus statement. *The Lancet Diabetes & Endocrinology*, *5*, 377-90.

Shugart, C., Jackson, J., & Fields, K. B. (2009, December 30). Diabetes in Sports. *Sports Health, 2*(1), 29-38. Thomas, D., Erdman, K. A., & Burke, L. M. (2016). Nutrition and Athletic Performance. *Official Journal of the American College of Sports Medicine*, 543-68.

Wiley, J., Westbrook, M., Greenfield, J. R., Day, R. O., & Braithwaite, J. (2014, April 2). S hared decision-making: the perspectives of young adults with type 1 diabetes mellitus. *Patient Preference and Adherence*, 423-435.

Yardley, J. E., & Colberg, S. R. (2017, January/February). Update on Management of Type 1 Diabetes and Type 2 Diabetes in Athletes. *Current Sports Medicine Reports*, 16(1), 38-44.

Questions?

christina.weidman1@northwestern.edu

john.mucovich@northwestern.edu

