

TRAL | A U.S. Concrete Company

The Future is Now

A U.S. Concrete Company

Environmentally Sustainable Concrete

Higher Performing Low Carbon Mixes

Levis

Levis stann

CENTRAL

High Volume Fly Ash (HVFA)

Ternary Blends: 50% replacement, 28 day strength; 70% replacement, later age strengths

Higher Performing Low Carbon Mixes

Approximately 80,000 cubic yards of lower carbon concrete were supplied for the auger piles and the overall Stadium structure. The mixes selected reduced the overall footprint by 23 million pounds of CO_2 .

CENTRAL

Higher Performing Low Carbon Mixes

Higher Performing Concrete

Lower Carbon Footprint

- Used for nearly all applications on a daily basis
- Increase strength
- Reduce Global Warming Potential (GWP)

Carbon Sequestration Example: CarbonCure

ARB IT DIOXIDE

Recycled waste carbon dioxide makes a greener, stronger concrete.

657

Carbon Sequestration Example: Blue Planet

Blue Planet has developed a process to coat aggregate with calcium carbonate from CO₂

Field trial at SFO: Batched and delivered concrete containing lightweight aggregate coated by Blue Planet.

Provides carbon footprint reduction of the concrete mix.

Recycled Concrete Aggregate

San Francisco has an ordinance that requires maximum reuse and recycling of material and debris generated during construction and demolition projects.

DID

YOU

KNOW?

Solution: Crushed concrete used as aggregate in concrete >> No landfill, less draw on raw materials, less energy

Returned Fresh Concrete

Reduced Waste. Improved Productivity. Proven Performance.

Reusing Fresh Concrete: A Win-Win For Everyone

Decreased or Zero Trips to Landfills

- Reduced trucks on road
- Reduced air pollution
- Saves landfill space

ASTM C1798 recognizes unused concrete in a fresh state as an ingredient for a new concrete batch - in other words, it can be treated as a raw material, just like water, aggregates & cement.

Returned Fresh Concrete

DID YOU KNOW?

Improved Job Site Productivity

- 100% of fleet dedicated to concrete delivery
- Trucks are not sidelined for concrete disposal

... consistent, highly constructible concrete

Equal or Better Performance

- Strength
- Finishability

- 2 8% of concrete produced in California is returned
- CalEPA has estimated that unused concrete results in 2.2 million lbs. of excess carbon emissions/yr.

Caltrans green lighted the use of returned, fresh concrete at 15%

PROVEN PERFORMANCE

Target Design Strength

Average 28-Day Compressive Strength of ASTM C1798 Proportioned Concrete Mixtures versus Target Design Strength

Environmental Product Declarations (EPDs)

ENTRAL

A U.S. Concrete Company

High Performance Concrete

1640 Broadway Oakland

High Strength Mixes

Increased construction of high-rise buildings is driving the need for high strength mixes.

High Rise = High Performance

Tall Buildings = Pumping Challenges

TransBay Tower 6

High Strength Mixes

Benefits of high strength concrete Superior compressive strength

Low shrinkage

Low permeability

 High modulus of elasticity (MOE)

San Francisco Skyline

High MOE Performance Mixes: Reducing building sway

"...to make high-performance concrete, the materials matter. Use lower-quality sand and gravel and you'll need to add a larger amount of cement", said Todd Lamberty, a project manager for construction firm Webcor Builders.

Excerpt: Los Angeles Times. Project; Oceanwide Plaza, mixed-use development across from the Staples Center. Orca aggregate from Polaris.

High Early Strength Concrete ... Rapid Strength Concrete

Evolution of High Early Strength Concrete

LAX Airport >> One of first locations to use High Early Strength Concrete for overnight runway repairs

Highways

> High Early Strength Concrete quickly moved to highway repairs across the country

High Early Strength Concrete

PT Decks >> Now: High Early Strength Concrete = faster construction = reduced costs Site: 1400 Mission, SF

>> High Early Strength Concrete moved to bridge decks, including the closure strips for the SF-Oakland Bay Bridge

Rapid Drying Concrete

Eliminates moisture issues: takes moisture totally out of play before the floor is installed.

ARIDUS® Rapid Drying Concrete

Prevents Floor Covering Failures

Consumes excess water >> preventing moisture problems from the very beginning by accelerating the concrete drying time

Rapid Drying Concrete

Community Aquatics Center, Dublin, CA

Impact of Excess Moisture in Concrete Slabs

Construction Delays – Environmental Hazards – Cost Overruns Liability Issues – Moisture Mitigation – Damaged Reputation

A U.S. Concrete Company

Improving Productivity

Flowable Mixes

In-place costs – less labor and equipment

Worker safety – workers can place w/o entering excavation site.

Easy to place because it is "self-leveling"

Ideal for congested, reinforcement & difficult to reach sites Specified for projects needing highest levels of aesthetic results Properties of Flowable Mixes :

- 8" 10" slump: High Slump
- 22" 28" spread: Self-Consolidating Concrete (SCC)

Flowable Mixes

SFO Airport

19 thin

Real-time Communications

A U.S. Concrete Company

High Performance Testing

Problem: Inaccurate results from "field-cured" cylinders can create schedule delays and cost overruns Test probes enable contractors to monitor strength of early-age, in-place concrete in real-time = confidence + time-savings + reduces overdesign

Maturity Testing

Monitor concrete temperature and strength in real time.

More efficient by offering:

- Wireless connectivity
- Mobile-based data collection
- Labor cost reduction
- Quick decision making

A U.S. Concrete Company

Collaboration Case Study

San Francisco Public Utilities Commission

2014: Greenest office building in US

LEED Platinum

Immediate Occupancy after the *Big One*

Structural VE Redesign from Steel to Concrete

\$7.4M savings in structure

High-replacement concrete on large scale

Redesign from Steel to Concrete

By bringing the supplier in early:

- Allowed design team to have a better understanding of current concrete advances
- Clearly defined structural and environmental goals
- Time to develop and test mixes
- Allowed discussion on potential environmental impact of local material requirements of LEED

Collaboration included:

- Address constructability issues scale and speed
- Provide simple and reliable design info and construction specifications
- Redefine concrete specification limit cement content, specify target replacement with SCM
- Proportion slag and fly ash to optimize cost, workability, performance
- Mix design basis, batch testing vs. ACI methods

Trimmed

Collaboration at the front end, based on a PERFORMANCE approach vs. a PRESCRIPTIVE approach, along with mutually agreed upon sustainability and testing requirements yielded multiple advantages.

Construction Schedule		in Savings				
Reduced	Added		Achieved		Concrete Structure	Concrete Reflectivity
12 Inches	13 th Floor		3 Day		-0-	-\
Floor thickness	Due to concrete's reduced floor-to- floor height		High, early-strength requirement of 4500 PSI		Increased natural lighting	Allowed for reduced lighting requirements
Improved Thermal mass	Matt Sl 70% Cement replac	ab , ement	Cores Colum 70% Cement repl	& ns S acement	Elevated P.T. Slabs 56% Cement replacement	Saved 7.4M lbs. In CO ₂ emissions

Resulted in

\$12M

Every technology you have learned about today is HERE, NOW.