

Identification of Throwing Pathomechanics and Their Anatomical Origins

Aaron Struminger, PhD, ATC

Conflict of Interest

• I have no conflicts of interest in this presentation

Learning Objectives

- Describe phases of throwing in which upper extremity loading occurs
- Identify throwing styles associated with injury
- Distinguish underlying anatomical changes associated with pathomechanical throwing styles
- Consider evidence-based interventions to treat potential causes/effects of pathomechanical throwing styles

Epidemiology

Shoulder

- 30% overhead athletes seek treatment (Laudner '09)
- High recurrence rate (46.2%) (Rechel '10)
- Progressive degenerative change?

Elbow

- Chronic valgus stress (Werner '02, Miyashita '08)
- Tommy John "epidemic"
 - Rates more than doubled in past 10

years (Hodgins '16)

Phases of Throwing

Loading during Throwing

Shoulder

Elbow

Fleisig '95

Cocking

- Lead foot contact to max ER
- Most of shoulder abduction
 - Rotator cuff
 - Deltoid
- All concentric external rotation
 - Infraspinatus
 - Teres minor
- Core muscles
 - Assist with rotation

Acceleration

- Max ER to ball release
- Transfers energy from cocking
- High rate of internal rotation
 - Subscap
 - Lats
 - Pecs
- Small core rotation

Deceleration

- Ball release to max IR
- Stretch reflex of external rotators
- High eccentric ER activity
 - Teres minor
 - Infraspinatus
 - Posterior deltoid
 - Posterior capsule?

Consistency of Biomechanics over time

- 7-year study (Fleisig '17)
 - Some changes
 - ER increases (13°)
 - Stride length increases (10% of height)
 - More horizontal abduction (14°)
 - Begin core rotation later
- Upper Extremity kinematics?
 - Don't change much
 - Shoulder abduction (3°)
 - Elbow flexion (2°)
 - Lateral trunk tilt (2°)
 - Mechanical change = something is wrong

Measurement of Pitching

EASTERN MICHIGAN UNIVERSITY

- Kinematic variables in pitching are almost infinite
 - Elbow Flexion
 - External Rotation
 - Shoulder Horizontal Abduction
 - Hip-shoulder separation
 - Time of phases
 - Lower extremity
 - Stride length
 - Knee angle
 - Ankle angle
- Can measure at several points of pitching motion
 - SFC
 - Max ER
 - Release

Presentation Focus

- Trunk Lateral Flexion
- Shoulder Abduction
- Why?
 - Variability of measures
 - Measured at discrete time points
 - Linked to clinical implications
- Problem: Few prospective studies
 - Solution: look at forces/moments

Trunk Lateral Flexion

- What is normal?
- At SFC
 - Relatively neutral position
- At max ER
 - $18 \pm 10^{\circ}$
 - Near maximum (19 ± 10°)
- More neutral at release
 - 12 ± 11°

Solomito '15

Trunk Lateral Flexion-Simulation

- 33 pitchers
 - College
- Simulated different lateral trunk tilt angles
- No significant correlation to elbow valgus
 - Didn't agree with simulation

Matsuo '06

Trunk Lateral Flexion-3D

- 3D analysis
- 99 pitchers
 - College
- Trunk lean = Elbow valgus moment
 - Every 10° = 3.7Nm valgus force
- More lateral flexion increases lever arm
 - Allows for greater throwing velocity

Solomito '15

Trunk Lateral Flexion-3D

Caveat

- Every 10° increase (3.7 Nm) = 1.1 mph increase
- Requires arm modification to find "slot"
- Same increase in trunk lateral flexion angle
 - 1.5% increase in velocity
 - 4.8% increase in elbow valgus moment

Solomito '15

Trunk Lateral Flexion-2D

- 2D analysis works as well
- 72 pitchers
 - High school
- Video clips rated by experts
 - At maximum ER
 - Head contralateral more than one "heads width" from vertical line from stride foot
 - More concretely >25°

Oyama '13

Trunk Lateral Flexion-2D

- Those with "excessive" contralateral tilt
 - Greater valgus stress
 - Greater shoulder distraction force
 - Higher ball speed
- Gravity assists contralateral flexion during pitching
 - Strength deficits?

Oyama '13

Trunk Flexion and Shoulder Abduction

- Trunk doesn't act in isolation
- Ideal angle for lowest load
 - 10° Trunk lateral flexion
 - 100° Abduction
- Angles of 90-100° "best"

Matsuo '06

Shoulder Abduction

- Literature contradictory
- More abduction = More valgus moment
 - Average ABD = 109° (Werner 2007)
- More abduction = Less valgus moment
 - Average ABD = ?? (Aguinaldo 2009)
- "Sweet spot"

From Matsuo '99

Shoulder Abduction and Previous Injury

- Is there use in identifying this?
- Yes!
 - Pre-existing biomechanics
 - Changed biomechanics
- Professional baseball
 - UCL = same biomechanics (Fleisig 2015)
 - SLAP only reduced ER (Laughlin 2014)

Shoulder Abduction and Previous Injury

- High school baseball
- High school baseball
 - Limited abduction = previous injury
 - Properly predicts 78.6% of injured athletes

Injury group 0= uninjured, 1 - injured

Struminger unpublished

Next Steps

- Identified potentially injurious biomechanics
- Anatomical origins?
- What can we do about it as clinicians?

Excessive Trunk Flexion and Implications down Kinetic Chain

- Transfer of energy down kinetic chain
- Early cocking
 - External oblique active on non-dominant side
 - Helps rotation toward hitter (Hirashima 2002)

Excessive Trunk Flexion and Implications down Kinetic Chain

- Late cocking and acceleration
 - Dominant side external and internal oblique
 - Eccentrically control contralateral trunk tilt
 - Likely help energy transfer

Excessive Trunk Tilt-Intervention

- Excessive contralateral tilt linked to core weakness (Oyama '17)
 - Specifically: trunk rotation strength ratio
 - 83%
- Potentially associated with dominant internal oblique (Oyama '17, Ng 2001)

Excessive Trunk Tilt-Intervention

- 7 week core training can increase throwing velocity (Palmer '15)
 - Likely prevent injury too
- Can incorporate into shoulder rehab
 - Stay tuned
- General stability may be important too

Excessive Trunk Tilt- Exercises

- High plank (Beazley '17)
 - Both stability and obliques
- Side planks
 - Stability directly for obliques
 - Add rotation?
- Bicycle crunches
- Russian twists

Pitching: Anatomical Movement

- Cocking phase
 - Global motion: External rotation
 - Local motion: Humerus glides anteriorly

RC must maintain contact in glenoid

Limited Shoulder Abduction and Elbow Injury

- Continued excessive load on elbow
- Mechanics remain consistent over time
- May lead to recurrence

Shoulder Abduction: Strength

- Weakness and fatigue
 - Activation deficit in infraspinatus (Gandhi '12)
 - Abnormal humeral head translation
 - Protective mechanics to reduce injury risk?
- Fatigue
 - Flexion, ABD, IR strength deficits (Chou '15)
 - Lead to decreased abduction
 - Learned motor pattern?

Shoulder Abduction: Strength

- Lingering pain
- Rotator cuff pathology (Diederichsen '09, Lawrence '14)
 - When arm abducted past 90°
 - Anterior humeral head slide
 - RC activity decreases
 - Compensatory biomechanics?
- Impact function, change form slightly?
 - We aren't pitching coaches
 - We have other tools

Shoulder Abduction: Exercises

- Infraspinatus

 - Side-lying external rotation (85%)
 Horizontal abduction in external rotation ("T") (88%)
- Teres Minor
 - Side-lying external rotation (80%)
 - Horizontal abduction in external rotation ("T") (74%)
- Supraspinatus
 - Military press (80%)
 - Empty can (74%)
 Flexion (67%)

Shoulder Abduction: Flexibility

- Posterior shoulder tightness
 - From eccentric overload
 - Can present as deficit in abduction
- Leads to humeral head position closer to RC
 - Increases chances of impingement

Anterior View of Shoulder

Shoulder Abduction: Flexibility

- Normal stretching exercises
 - May not impact posterior capsule
- Joint mobilization
 - Posterior glide
- Mobilization with movement

Back to Objectives

- Describe the phases of throwing in which upper extremity loading occurs
 - Cocking (Late)
 - Acceleration
 - Deceleration
- Identify throwing styles associated with injury
 - Excessive contralateral trunk tilt
 - Limited shoulder abduction

Back to Objectives

- Distinguish the underlying anatomical changes associated with those throwing styles
 - Trunk tilt: poor core strength
 - Especially rotation to non-dominant side
 - Shoulder abduction: strength and flexibility
- Consider interventions to treat the potential causes/effects of those throwing styles
 - Trunk tilt: core stability, rotational exercises
 - Shoulder abduction: SL ER, "T" in ER, joint mobilization

Final Points

- Evaluation of pitching biomechanics adds to clinical exam
- Don't try to mess with biomechanics
 - Often leads to more injury
 - Putting high risk athletes on preventative program better option
- Build rapport with coaches
 - They are at every session
 - They can notice changes

Questions?

• Email: astrumin@emich.edu

