

TREATING LUMBAR AND THORACIC SPINE MOBILITY DEFICITS USING MUSCLE ENERGY TECHNIQUES

Scott Lawrance Clinical Associate Professor Purdue University Great Lakes Athletic Trainers' Association Annual Meeting, Wheeling, IL March 16, 2019

DISCLAIMER AND CONFLICT OF INTEREST

- No conflict of interest present in today's presentation.
- The views expressed in these slides and the today's discussion are mine and do not represent GLATA or Purdue University,
- Participants must use discretion when using the information contained in this presentation

OBJECTIVES

- Learn basic muscle energy technique for the lumbar and thoracic spine.
- Correctly select and match indications and contraindications to patient.
- Practice application of common muscle energy techniques through scenario based group discussion and lab activities.
- Discuss the use of manual therapy as an adjunct to therapeutic exercises in rehabilitation of common injuries.

OUTCOME

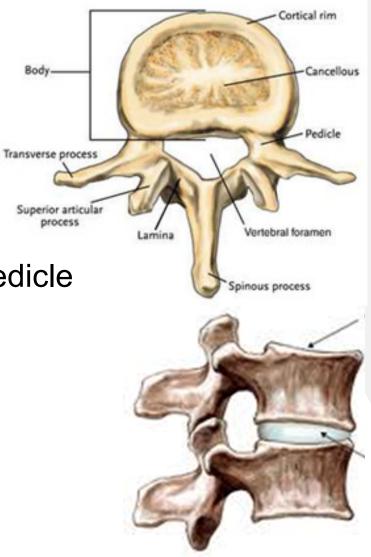
Goal:

 Make assessment and use of muscle energy easy for treating alignment and mobility problems in the thoracic and lumbar spine

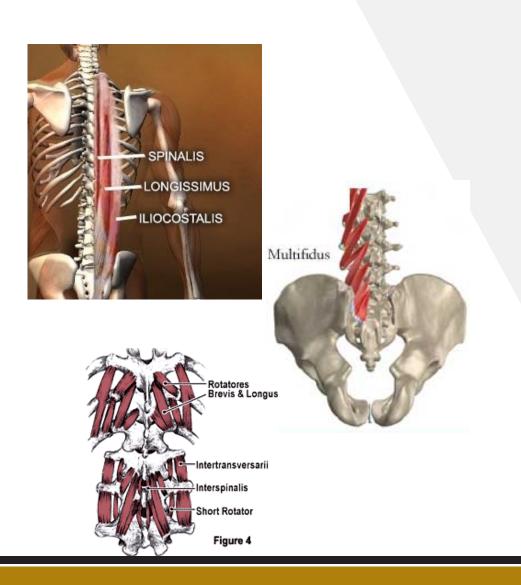
CLINICAL SCENARIOS

- Your athlete says they've had acute low back pain ever since they were working out in the weight room
- Your client says that they felt "something happen" in his/her back after landing from a jump
- Your patient reports difficulty "twisting and/or bending over" after injuring back trying to pull-start their mower

COMMON DEFICIT PROFILE

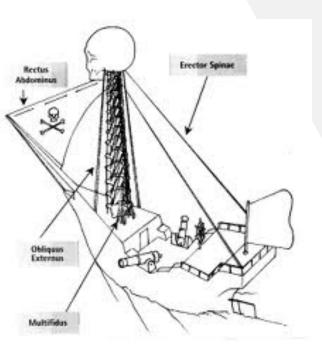

- Possible leg length discrepancy
- Possible changes in facet joint articulation
- Diminished lumbar sideglide
- Tight hip flexors
- Tight quadratus lumborum
- Tight piriformis
- Weak gluteus medius
- Inhibited gluteus maximus
- Inhibited transversospinalis musculature
- Weak hip lateral rotators

OBLIGATORY ANATOMY REVIEW


- General Vertebral Osteology
 - Vertebral body
 - Spinal Arch
 - Zygopophyseal joint (facet joint) is between pedicle and lamina

OBLIGATORY ANATOMY REVIEW

- Posterior Trunk Myology
 - Erector Spinae (Mobility)
 - Iliocostalis
 - Longissimus
 - Spinalis
 - Transversospinalis (Stability)
 - Semispinalis
 - Multifidus
 - Rotatores



LUMBAR SPINE TENSEGRITY

 Neutral joint position with ideal structural length of a muscle relative to its synergists and antagonist

SPINAL COLUMN MOVEMENT

- Movement Considerations
 - Flexion: facet joints open
 - Extension: facet joints close
 - Sidebending: facet joints on the convex side are distracted, facet joints on concave side are compressed
 - Rotation: compression on one side with distraction on the opposite side
 - Coupled motions: rotation and sidebending of the spine are always combined together

rae will

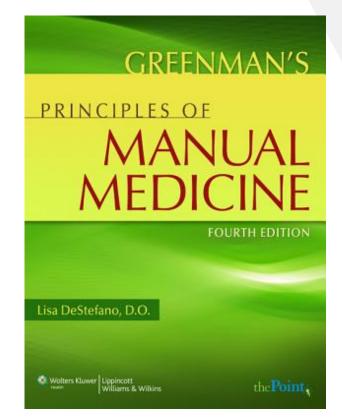
brae

FRYETTE'S LAWS OF PHYSIOLOGICAL MOTION

- First Law
- opposite direction the Really control of the section the section the section the section the section of the sec When the spine is in a neutral position occur in the opposite direction
- Second Law
 - When the set rotatio
- Third Lay
 - Anytime egment moves in one plane, movement decreases in the other panes of movement

TREATMENT OPTIONS

- Manipulation
- Modalities
- Therapeutic Exercise
- Manual Therapy


WHAT IS MUSCLE ENERGY?

- A manual medicine procedure which involved voluntary contraction of the patient's muscle in a precisely controlled direction at varying levels of intensity, against a <u>distinctly</u> executed counterforce applied by the operator.
- Muscle energy can be used with precision to facilitate and inhibit spinal muscles from the atlas to the sacroiliac.

HOW DOES IT WORK?

 Physiologic mechanisms of muscle energy are complex and beyond the scope of this talk

ESSENTIAL STEPS IN TREATMENT

- 1. Position the lesion area against the physiologic barrier following all three planes of motion
- 2. Apply a counterforce to maintain this physiologic barrier
- 3. The patient is instructed to place a specific force in a specific direction against the operator

ESSENTIAL STEPS IN TREATMENT

- 4. A contraction lasting 3-5 seconds is applied by the patient against the operator's counterforce
- 5. The operator then "takes up the slack" in the tissues to the next physiologic barrier
- 6. The contraction sequence is again repeated until a total of three contraction-relaxation cycles are performed
- 7. The area is then re-assessed for resolution of the dysfunction

POST-TREATMENT INSTRUCTIONS

- Advise the patient of possible post-treatment soreness or stiffness (24-72 hours)
- Patient should drink plenty of fluids
- Patient should be careful with all activities and body mechanics for 24-48 hours
- Advise patient to call if severe, unrelenting pain occurs
- Home exercise program

COMMON OPERATOR ERRORS

- Not accurately controlling the patient's joint position at the proper barrier
- Not providing counterforce to the patient's contraction in correct direction
- Inadequate patient instruction
- Moving the patient too soon into the next joint position after muscle contraction

CONTRAINDICATIONS

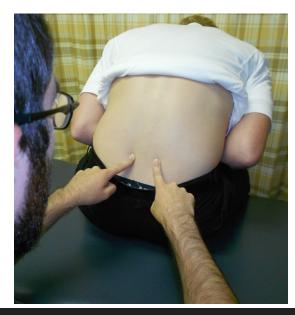
- Fracture
- Painful muscle, tendon, ligamentous structures with significant tissue damage
- Significant muscle spasms
- Uncooperative patient

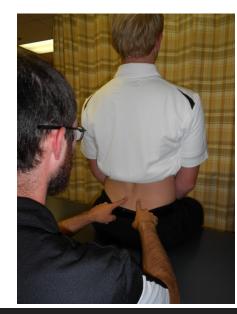
FINDING THE PROBLEM

- Muscle energy requires an accurate application of forces and thus the evaluation of the movement dysfunction is crucial
- Evaluation of motion:
 - Gross spinal motion
 - Segmental motion

Assumption: you've already cleared alignment problems in the sacroiliac joint and pelvis

GROSS SPINAL MOTION ASSESSMENT


Note: quality of motion, amount of motion, degree of rotation, complains of pinching with extension, diminishment or exaggeration of spinal curves

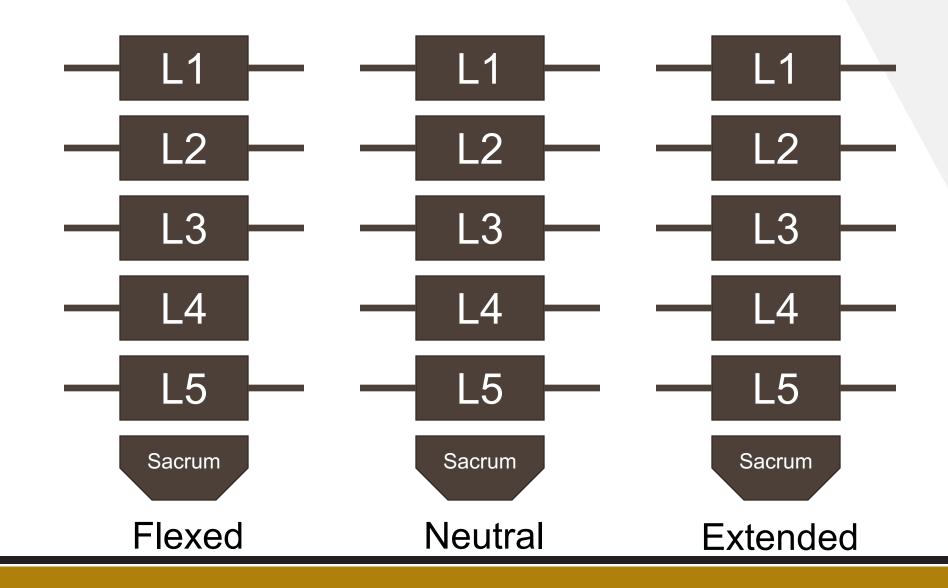


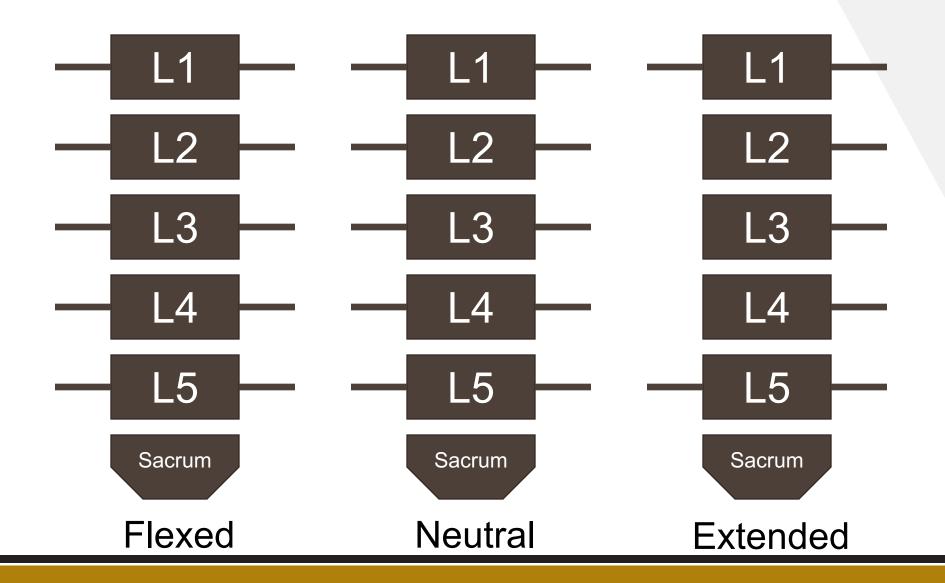
SEGMENTAL MOBILITY ASSESSMENT

- Positional palpation lumbar spine
 - Flexed, neutral, and extended position
 - Is the segment neutral vs. rotated to the right or the left

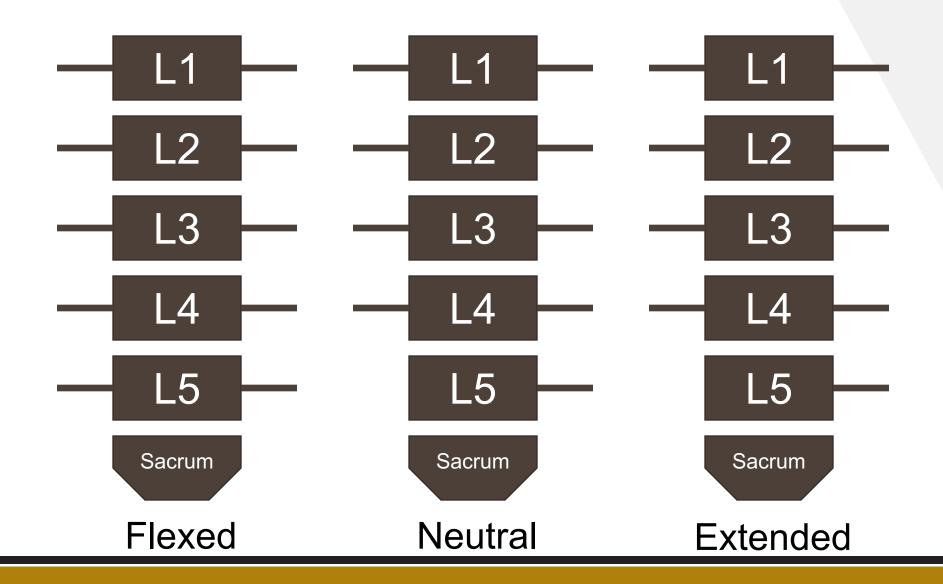
SEGMENTAL MOBILITY ASSESSMENT

- Positional palpation thoracic spine
 - Flexed, neutral, and extended position
 - Is the segment neutral vs. rotated to the right or the left




GROUP VS. SEGMENT DYSFUNCTION

- Group dysfunctions (Type I) involve 3 or more segments in a row
 - Dysfunction is usually due to a long muscle crossing the area: quadratus lumborum, latissimus dorsi, erector spinae
- Segment dysfunctions (Type II) involve a single vertebral unit
 - Most commonly seen



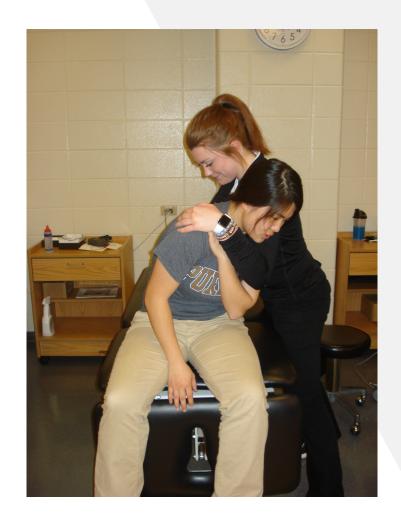
LAB

- Work with a partner or in a small group to assess spine mobility
 - Can you identify areas of decreased mobility grossly?
 - Gross ROM
 - Can you identify areas of decreased mobility segmentally?
 - Positional palpation
 - Can you name the dysfunction?

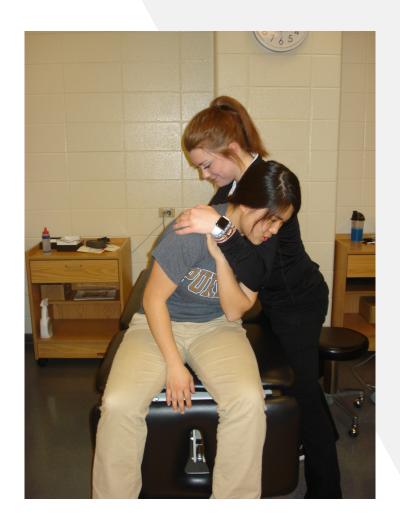
TREATING GROUP VS. SEGMENT DYSFUNCTION

• Group dysfunctions (Type I) = therapeutic exercises, modalities, manual therapy

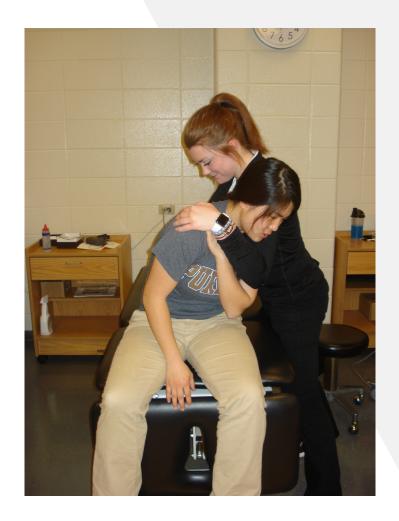
• Segmental dysfunctions (Type II) = Muscle Energy



- Patient positioning
 - Place them in a seated position with legs off the end of table
 - Stand to the side of the patient where you are going to sidebend them toward
 - Patient will cross that arm over their chest



- Finding the barrier (1 of 2)
 - The trunk is flexed or extended until motion is felt in the involved segment
 - If the prominent transverse process was found in <u>flexion</u>, the trunk should be <u>extended</u> until the segment moves
 - If the prominent transverse process was found in <u>extension</u>, the trunk should be <u>flexed</u> until the segment moves



- Finding the barrier (2 of 2)
 - Maintain trunk flexion or extension while moving the patient into sidebending until the segment you are monitoring moves
 - Maintaining this position, add passive rotation into you until you once again feel the segment start to move

- Treatment
 - Examiner tries to rotate the patient back toward a neutral position while patient holds position
 - Minimal force is needed
 - Contraction held for 3-5 seconds
 - Examiner "re-establishes" the barrier with further rotation
 - A total of 3 contractions are performed
 - Be sure not to rush the treatment → time must be allowed for musculature to relax

- Re-assess
 - Segmental motion
 - Gross motion (comparable sign)

LAB

- Work with a partner or in a small group to treat thoracic spine mobility
 - Try muscle energy segmental positioning
 - Stand on opposite side of the rotation you found
 - Flex/extend the patient until you feel the segment move
 - Sidebend to segment motion, rotate to segment motion
 - Have them hold while you rotate them back to a neutral position
 - Repeat 3 times, take advantage of the post-isometric relaxation response
 - Re-assess!

TREATING TYPE II DYSFUNCTIONS - LUMBAR

- Patient positioning
 - Place them in a sidelying position on the side the transverse process is MOST PROMINENT
 - Example: the right L5 transverse process was prominent in extension (and neutral) so the patient would be treated sidelying on right side

- Finding the barrier (1 of 2)
 - The bottom shoulder is "pulled out" from underneath them i.e. pulled into anterior protracted position
 - This introduces sidebending into lumbar spine
 - The legs are flexed or extended until motion is felt in the involved segment
 - If the prominent transverse process was found in <u>flexion</u>, the hips should be <u>extended</u> until the segment moves
 - If the prominent transverse process was found in <u>extension</u>, the hips should be <u>flexed</u> until the segment moves

- Finding the barrier (2 of 2)
 - The top shoulder of the patient is then pushed posteriorly toward the table until the barrier is felt

- Treatment
 - Patient actively tries to rotate back toward a neutral position while examiner holds position
 - Minimal force is needed
 - Contraction held for 3-5 seconds
 - Examiner "re-establishes" the barrier with further rotation
 - A total of 3 contractions are performed
 - Be sure not to rush the treatment → time must be allowed for musculature to relax

- Re-assess
 - Segmental spinal motion
 - Gross spinal motion (comparable sign)

LAB

- Work with a partner or in a small group to treat lumbar spine mobility
 - Try muscle energy segmental positioning
 - Have them start by laying on the side they are rotated toward
 - Pull bottom shoulder forward, flex/extend hips until segment moves
 - Have them hold while you rotate them back to the table
 - Repeat 3 times, take advantage of the post-isometric relaxation response
 - Re-assess!

EVALUATION/TREATMENT ALGORITHM

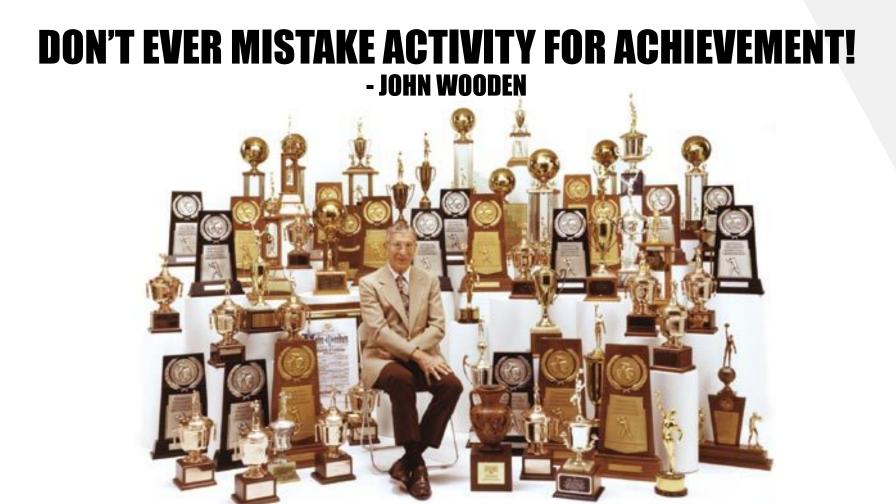
- At this point...
 - Pelvic ring is balanced
 - Normal joint springs are present
 - Lumbar and thoracic spine is clear of positional faults
- This is a good time to start a core stability program...

EVALUATION/TREATMENT ALGORITHM

- At this point, it's important to consider the effects of the ripple wave...
- Issues in the low back can cause problems in other areas and vice versa
- It's common to have decreased hip mobility and/or decreased thoracic spine extension in combination with low back pain

EVALUATION/TREATMENT ALGORITHM

- Now our patients have...
 - Pelvic ring balanced
 - Normal joint springs
 - Clean lumbar spine
 - Improving core stability
 - Improving hip mobility
 - Improving thoracic spine mobility
- At this point, any remaining symptoms likely coming from hypertonic musculature


Can work on at the same time

SUMMARY

- Perform an accurate and complete evaluation
- Be precise with patient positioning and your force application
- Whatever position you find the vertebrae in, you do the opposite to treat it (Ex: FRS right ERS left it)
- Do not use too much force with your technique
- This should not be the only thing you do muscle energy is an adjunct to therapeutic exercise, not a replacement

QUESTIONS?

Scott Lawrance, DHSc, LAT, ATC, MSPT, CSCS Purdue University 800 W University Drive

West Lafayette, IN 47907

(765) 496-0502

slawranc@purdue.edu

SELawrance

- 1. Gregory PL, Biswas AC, Batt ME. Musculoskeletal problems of the chest wall in athletes. *Sports Med.* 2002;32(4):235-250.
- 2. Masaracchio M, Kirker K, Collins CK, Hanney W, Liu X. An Intervention-Based Clinical Reasoning Framework to Guide the Management of Thoracic Pain in a Dancer: A Case Report. *Int J Sports Phys Ther*. 2016 Dec;11(7):1135-1149.
- 3. Wainner RS, Whitman JM, Cleland JA, Flynn TW. Regional interdependence: A musculoskeletal examination model whose time has come. *J Orthop Sports Phys Ther.* 2007;37:658-660.
- 4. Olson KA. *Manual Physical Therapy of the Spine.* St. Louis, MI: Elsevier; 2009.
- 5. Grindstaff TL, Beazell JR, Saliba EN, Ingersoll CD. Treatment of a female collegiate rower with costochondritis: a case report. *J Man Manip Ther.* 2010;18(2):64-68.
- 6. Karlson KA. Thoracic region pain in athletes. *Curr Sports Med Rep.* 2004;3(1):53-57.
- 7. Boyles RE, Ritland BM, Miracle BM, et al. The short-term effects of thoracic spine thrust manipulation on patients with shoulder impingement syndrome. *Man Ther.* 2009;14(4):375-380.

- 8. Magee DJ. Orthopedic Physical Assessment. 4th ed. Philadelphia: Saunders; 2002.
- 9. Willems JM, Jull GA, Ng J-F. An in vivo study of the primary and coupled rotations of the thoracic spine. *Clinical Biomechanics.* 1996;11(6):311-316.
- 10. Johnson KD, Kim KM, Yu BK, Saliba SA, Grindstaff TL. Reliability of thoracic spine rotation rangeof-motion measurements in healthy adults. *J Ath Train.* 2012;47(1):52-60.
- 11. Cook and Hegedus. Orthopedic Clinical Examination Tests: An Evidence Based Approach. Prentice Hall. 2013.
- 12. Fiebert IM, Spyropoulos T, Peterman D, Dotson L. Thoracic segmental flexion during cervical forward bending. *J Back Musculoskelet Rehabil*. 1993;3(4):80-5.
- 13. Manning DM, Dedrick GS, Sizer PS, Brismée JM. Reliability of a seated three-dimensional passive intervertebral motion test for mobility, end-feel, and pain provocation in patients with cervicalgia. *J Man Manip Ther*. 2012;20(3):135-41.

- 14. van Trijffel E, Plochg T, van Hartingsveld F, Lucas C, Oostendorp RA. The role and position of passive intervertebral motion assessment within clinical reasoning and decision-making in manual physical therapy: a qualitative interview study. *J Man Manip Ther*. 2010 Jun; 18(2): 111–118.
- 15. Wirth B, Knecht C, Humphreys K. Spine Day 2012: spinal pain in Swiss school childrenepidemiology and risk factors. *BMC Pediatr*. 2013 Oct 5;13:159.
- 16. Malina RM, Morano PJ, Barron M, Miller SJ, Cumming SP, Kontos AP. Incidence and player risk factors for injury in youth football. *Clin J Sport Med*. 2006 May;16(3):214-22.
- 17. McDevitt A, Young J, Mintken P, Cleland J. Regional interdependence and manual therapy directed at the thoracic spine. *J Man Manip Ther*. 2015 Jul;23(3):139-46.
- 18. Heneghan NR, Rushton A. Understanding why the thoracic region is the 'Cinderella' region of the spine. *Man Ther*. 2016 Feb;21:274-6.
- 19. Johnson KD, Kim KM, Yu BK, Saliba SA, Grindstaff TL. Reliability of thoracic spine rotation rangeof-motion measurements in healthy adults. *J Athl Train*. 2012 Jan-Feb;47(1):52-60.

- 20. Anderson VB. The intra-rater reliability of measured thoracic spine mobility in chronic rotator cuff pathology. *J Musculoskelet Neuronal Interact*. 2011 Dec;11(4):314-9.
- 21. Kellis E, Adamou G, Tzilios G, Emmanouilidou M. Reliability of spinal range of motion in healthy boys using a skin-surface device. *J Manipulative Physiol Ther*. 2008 Oct;31(8):570-6.
- 22. Brismée JM, Gipson D, Ivie D, et al. Interrater reliability of a passive physiological intervertebral motion test in the mid-thoracic spine. *J Manipulative Physiol Ther*. 2006 Jun;29(5):368-73.
- 23. Love RM, Brodeur RR. Inter- and intra-examiner reliability of motion palpation for the thoracolumbar spine. *J Manipulative Physiol Ther*. 1987 Feb;10(1):1-4.
- 24. Walker BF, Koppenhaver SL, Stomski NJ, Hebert JJ. Interrater Reliability of Motion Palpation in the Thoracic Spine. *Evid Based Complement Alternat Med*. 2015;2015:815407.
- 25. Childs JD, Cleland JA, Elliott JM, et al. Neck pain: Clinical practice guidelines linked to the International Classification of Functioning, Disability, and Health from the Orthopedic Section of the American Physical Therapy Association. *J Orthop Sports Phys Ther*. 2008;38:A1-A34.

- 26. Cleland JA, Childs JD, Fritz JM, Whitman JM, Eberhart SL. Development of a clinical prediction rule for guiding treatment of a subgroup of patients with neck pain: Use of thoracic spine manipulation, exercise, and patient education. *Phys Ther*. 2007;87:9-23.
- 27. Cleland JA, Childs JD, McRae M, Palmer JA, Stowell T. Immediate effects of thoracic manipulation in patients with neck pain: a randomized clinical trial. *Man Ther*. 2005;10:127-135.
- 28. Cleland JA, Flynn TW, Childs JD, Eberhart S. The audible pop from thoracic spine thrust manipulation and its relation to short-term outcomes in patients with neck pain. J Man Manip Ther. 2007;15:143-154.
- 29. Cleland JA, Glynn P, Whitman JM, Eberhart SL, MacDonald C, Childs JD. Short-term effects of thrust versus nonthrust mobilization/manipulation directed at the thoracic spine in patients with neck pain: a randomized clinical trial. *Phys Ther*. 2007;87:431-440.
- 30. Gonzalez-Iglesias J, Fernandez-de-las-Penas C, Cleland JA, Gutierrez-Vega Mdel R. Thoracic spine manipulation for the management of patients with neck pain: A randomized clinical trial. *J Orthop Sports Phys Ther*. 2009;39:20-27.

- 31. Gonzalez-Iglesias J, Fernandez-de-las-Penas C, Cleland JA, Alburquerque-Sendin F, Palomequedel-Cerro L, Mendez-Sanchez R. Inclusion of thoracic spine thrust manipulation into an electrotherapy/thermal program for the management of patients with acute mechanical neck pain: A randomized clinical trial. *Man Ther*. 2009;14:306-313.
- 32. Gonzalez-Iglesias J, Fernandez-de-Las-Penas C, Cleland JA, Huijbregts P, Del Rosario Gutierrez-Vega M. Short-term effects of cervical kinesio taping on pain and cervical range of motion in patients with acute whiplash injury: A randomized clinical trial. *J Orthop Sports Phys Ther*. 2009;39:515-521.
- 33. Masaracchio M, Cleland JA, Hellman M, Hagins M. Short-term combined effects of thoracic spine thrust manipulation and cervical spine nonthrust manipulation in individuals with mechanical neck pain: A randomized clinical trial. *J Orthop Sports Phys Ther*. 2013;43:118-127.
- 34. Mintken PE, Cleland JA, Carpenter KJ, Bieniek ML, Keirns M, Whitman JM. Some factors predict successful short-term outcomes in individuals with shoulder pain receiving cervicothoracic manipulation: a single-arm trial. *Phys Ther*. 2010;90:26-42.

- 35. Strunce JB, Walker MJ, Boyles RE, Young BA. The immediate effects of thoracic spine and rib manipulation on subjects with primary complaints of shoulder pain. J Man Manip Ther. 2009;17:230-236.
- 36. Aiken DL, Vaughn D. The use of functional and traditional mobilization interventions in a patient with chronic thoracic pain: A case report. *J Man Manip Ther*. 2013;21:134-141.
- 37. Chok B, Wong WP. Treatment of unilateral upper thoracic vertebral pain using an eclectic approach. *Physiother Res Int*. 2000;5:129-133.
- 38. Fruth SJ. Differential diagnosis and treatment in a patient with posterior upper thoracic pain. *Phys Ther.* 2006;86:254-268.
- 39. Kelley JL, Whitney SL. The use of nonthrust manipulation in an adolescent for the treatment of thoracic pain and rib dysfunction: A case report. *J Orthop Sports Phys Ther*. 2006;36:887-892.
- 40. Schiller L. Effectiveness of spinal manipulative therapy in the treatment of mechanical thoracic spine pain: A pilot randomized clinical trial. *J Manipulative Physiol Ther*. 2001;24:394-401.

- 41. Mulligan BR. Manual Therapy "NAGS", "SNAGS", "MWMS" etc. 4th ed. Wellington, New Zealand: Plane View Services Ltd; 1999.
- 42. Greenman PE. Principles of Manual Medicine, 3rd Ed. Lippincott Williams & Wilkins; 2003.
- 43. Chaitow L, Liebenson C, Muscle Energy Techniques. Edinburgh, Churchill Livingstone. 1996.